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Abstract-Natural convection of a dusty fluid in an infinite rectangular channel with differentially heated 
vertical walls and adiabatic horizontal walls has been studied. The problem has been solved using a 
combination scheme of central and second upwind differencing. It is seen that the heat transfer rate 
decreases with an increase of mass concentration of dust particles, but it increases with an increase of the 

Rayleigh number. 0 1997 Elsevier Science Ltd. 

1. INTRODUCTION 

There have been numerous theoretical and exper- 
imental studies of heat and mass transfer induced by 
natural convection in fluids. These studies have many 
applications in phya#ical systems where heat transport 
by buoyancy induced convective motion takes place, 
such as, chemical reactor, nuclear reactor, combustion 
systems, pneumatic transport etc. In some of these 
applications, the fluid may contain suspended dust 
particles. 

Kazakevich and Kravipin [l] have experimentally 
studied the aerodynamic resistance of a dusty gas 
flowing through a isystem of pipes and have shown 
that the resistance .is less than that of the clear gas. 
Saffman [2] gave a rnodel for theoretical investigation 
of the above phenomenon. Saffman found an expla- 
nation of reduction of viscosity in that the dust par- 
ticles in any gas hav’: much larger inertia than that the 
equivalent volume of air. The relative motion of the 
dust particles and the air will dissipate energy because 
of the drag between dust and air, and thus energy is 
extracted from the system. Saffman verified the above 
hypothesis on studying the stability of a laminar flow 
by investigating the effects of dust particles on the 
critical Reynolds member for transition to turbulent 
flow. Marble [3] extended the model of Saffman so as 
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to include slip stress tensor and slip energy flux which 
arise from momentum transport due to particle 
motion at velocities different from the mean particle 
velocity, and different temperature lags within the 
same region, respectively. In the discussion of Mar- 
ble’s study [3] Hoglund has given a comparison of 
experimental and theoretical results of gas and particle 
temperature in a rocket nozzle and remarked that 
“The important point is that these preliminary data 
shown calculated and experimental thermal lags in 
excellent agreement. The closed agreement lends 
quantitative support to the type of calculations dis- 
cussed by Marble and, especially, to the accuracy of 
predictions of particle lag in rocket nozzles.” 

Farbar and Morley [4] made an experimental study 
of heat transfer by adding alumina-silica catalyst with 
air and found that the heat transfer coefficient of the 
mixture increased. Farbar and Depew [5] studied the 
effect of the size of dust particles on the rate of heat 
transfer and showed that it is strongly dependent on 
the particle size. Sukomel et al. [6] performed an 
experiment to find the rate of heat transfer in the flow 
of helium, nitrogen and air having suspended particles 
of graphite and aluminium. It was observed that the 
rate of heat transfer reduces due to addition of par- 
ticles if the loading ratio between solid and gas is less 
than 3. Tien and Quan [7] found that Nusselt number 
of air with lead is less than that of fresh air and it is 
significantly lower when glass particles are added to 
the air. Depew and Kramer [S] made a critical review 
on heat transfer to flowing gas-solid mixtures. They 
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NOMENCLATURE 

A aspect ratio (l/d=) ad dust parameter 
5 specific heat of fluid B coefficient of thermal expansion 

f; 
specific heat of particle phase 

;t 
ratio of c, and c,, 

divergence of velocity vector increment of time 
4 width of the channel 6X increment of x 
dP work done by the particle phase per SY increment of y 

unit volume AT temperature difference 
f mass concentration of particle phase i vorticity of fluid 
I% body force on fluid per unit volume p coefficient of viscosity of fluid 

P, fluid-particle interaction force per unit V kinematic viscosity of fluid 
volume P density of fluid 

g acceleration due to gravity rln velocity relaxation time of particles 
k thermal conductivity of fluid TT thermal relaxation time of particles 
1 height of the channel momentum flux of un 
m mass of a particle 

$% 
stream function. 

N number density of particles 
P pressure of fluid 
PS static pressure of fluid 
q velocity vector of fluid Subscripts 
4f rate of heat flux of fluid B value at bottom face of control volume 

rate of heat flux of particle phase . 
4. value at (i,j) cell 

QP thermal interaction force per unit E value at left face of control volume 
volume M value at the middle of the channel 

‘b radius of particle P for particle phase 
t time R value at right face of control volume 
T temperature of fluid T value at top face of control volume 
Ti initial temperature W value at the wall of the channel. 
u x-component velocity of fluid 
V y-component velocity of fluid 
x, Y, z Cartesian coordinates. 

Superscripts 
Greek symbols n value at nth time step 

a, combination factor * for dimensionless value. 

have discussed experimental as well as theoretical 
study. Tien [9] derived the energy relationships and 
produced a set of equations which are very similar to 
Saffman’s model. Performing an experiment on the 
transportation of glass particles in air through a tube 
having uniform heat flux, Depew showed that these 
equations are valid for 30 rnp spheres and Reynolds 
number (< 30 000). In their review they concluded 
that data collected by various investigators indicate 
that heat transfer can be augmented by the addition 
of solid particles to a gas stream. The results are appli- 
cable only to very dilute concentrations and to very 
small particles which follows Stokes’ drag law. They 
have shown that under these conditions there are good 
agreement between the results obtained from exper- 
imental and the above model. 

Ramamurthy [lo] studied the free convection effects 
on the Stokes problem for an infinite vertical plate in 
a dusty fluid analytically and showed that the rate of 
heat transfer is directly proportional to mass con- 
centration of particles. However, not many studies on 

natural convection problem of dusty fluid are reported 
in available literature. 

Investigations on the natural convection of clear 
fluid in a rectangular cavity for transient heating of 
the vertical walls have been made by several authors. 
The aspect ratio (A) of the cavity or channel, defined 
by the ratio of the height of the channel to its width, 
plays an important role in the convection phenom- 
enon. Batchelor [l 11, Poots [ 121 and Gill [13] found 
analytical solution, whereas Wilkes and Churchill [ 141 
and De Vahl Davis [lS] solved the problem numeri- 
cally when A 2 1. For rectangular cavity with aspect 
ratio A G 1, Patterson and Imberger [ 161 have given 
a numerical solution. They have shown that a number 
of initial flow types are possible which ultimately leads 
to two basic types of steady flow determined by the 
relative values of the dimensionless parameters, e.g. 
Prandtl number, Rayleigh number describing the flow. 

In the present study, free convective heat transfer 
to a dusty fluid due to differentially heated vertical 
walls of a rectangular channel has been considered. 
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The governing equations for the two-dimensional con- 
vective flow are coupled and non-linear, hence, it is 
not possible to get an analytical solution. This prob- 
lem has been solved by finite difference method using 
staggered grid. 

2. FORMULATION OF THE PROBLEM 

We consider a dusty fluid initially at rest within an 
infinitely long closed rectangular horizontal channel. 
We have taken z-axis along the axis of the channel, x- 
axis vertically upwards and y-axis horizontally, but 
perpendicular to the axis of the channel as shown in 
Fig. 1. Let the height and width of the channel be I 
and d,, respectively. Initially, the system is having a 
uniform temperature Ti. Suddenly, the wall y = 0 is 
heated to a temperature T, + AT and the wall y = d, is 
cooled to a temperature Ti- AT and natural con- 
vection starts due to this. 

Following Saffman’s model [2] of a dusty fluid, the 
governing equations for two-dimensional incom- 
pressibleflow-given by Marble [3] is 

div * q = 0 

P {;+(q*V)q} = -VP+V(PV.q)+Fp+Fb 

Pep {;+(qV} = e+Qp+dp+@f 

div * qp = 0 

P %+(wV)qp = -VP,-F,+Fbp 

(1) 

(2) 

r, = m/6xpr, ; is called relaxation time during which 
the velocity of the particle phase relative to the fluid 
is reduced to l/e times its initial value and m is the 
mass of each particle. Similarly, the total thermal 
interaction between the fluid and particle phase per 
unit volume is given by 

(3) 

(4) 

(5) 

and rr = mc,/4nkr, is thermal relaxation time of par- 
ticle phase, i.e. time rT, the temperature of the particle 
phase relative to the fluid is l/e times the initial value. 
The rate of work done by the particles due to the force 
of interaction with the fluid is 

4 =(qp-q)*Fp. 

(6) In most of the studies of dusty fluid flows, certain 

where the volume fraction and viscosity of the pseudo- 
fluid of solid particles have been neglected. Here q, T, 
p, F,, and p are velocity, temperature, pressure, body 
force and density of fluid, respectively, and a subscript 
p in them denotes corresponding entities of particle 
phase. p and cP, respectively, are the viscosity and 
specific heat of fluid. c, is the specific heat of particles. 
qf and qs, represent heat fluxes for fluid and for particle 
phase, respectively. (I+ is the viscous dissipation of 
fluid. F, is the total fluid-particle interaction force per 
unit volume. If Reynolds number based on the relative 
velocity of particle is less than unity then the force 
accelerating the particle to the fluid speed is given by 
Stokes law which is 6m,,p(q, - q), where rP is the radius 
of a particle. If N is assumed to be the number density 
of particles, the total interaction force per unit volume 
is 

R, = 6xNr,&, -9) = pP(qP -q>/rm 

Fig. 1. Schematic diagram of the cross-section of an infinite rectangular channel. 
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simplifying assumptions are usually made for dilute 
suspensions. In this study the following assumptions 
have been made : 

(1) 
(2) 

The number density N of particles is constant. 
The solid particles are sparsely distributed and 
they are non-interacting, so that the pressure 
locally have same velocity vector and tempera- 
ture. Due to this assumption of lack of ran- 
domness in local particle motion, the pressure 
associated with the particle cloud is negligible. 
Then the fluid pressure p will be the same as the 
total pressure of the mixture. 

The temperature difference between two vertical 
walls is considered to be small so that the change in 
viscosity is not significant and the how can be assumed 
as laminar. Assuming all external forces other than 
gravitational forces to be negligible, the governing 
equations for two-dimensional free convective flow 
can be written, from above equations, as 

+ ff(up - 4 -gP (8) 

p g+u;+ve ( ay) : p($+$) =_-+ 

+ $(up - 0) (9) 

PC* O1fUg+“g)=k(g+$) 
( 

aT 

+~(Tp-T)+${(up--)‘+(y-L))*} (10) 

!5+!ko 
ay (11) 

pp 
( 

2 +u,~+u,~ 
> 

= -f$4p-II) (12) 

( 

au pp $+u,z+a i!fF! 
p ay > 

= -p”(ll,-0) (13) 
%n 

ppcs 
i 
~+up~+vp~ 

> 
= -Y(T,-T) 

(14) 

where u, u are the velocity components along x- and 
y-axis. 

Initially, the dusty fluid is considered to be at rest 
and the convection starts by sudden change in tem- 
perature of the vertical walls. Actually this initial con- 

dition seems to be unrealistic, but a uniform dis- 
tribution of suspended particles in a static fluid can 
be thought for a moment and that moment can be 
considered to be initial time. 

Then the initial conditions are 

24 = v = up = VP = 0, 

T = T, = T, at t < 0, Vx, y. (15) 

The temperature of the vertical walls y = 0 and 
y = d, are maintained at T, + AT and T, -AT, respec- 
tively. The boundary conditions at the vertical walls 
are 

u=v=vp=o, T=T,+AT aty=O 

1 
VX. 

u=v=vp=O, T=T,-AT aty=d, 

(16) 

The horizontal walls are insulated and thus the 
boundary conditions at these walls are 

u=v=u,=o, 

ar 
Z=O atx=O andat x=lVy. (17) 

To make the above system dimensionless, we intro- 
duce the following non-dimensional variables 

x*=x 
d, ’ 

Y*2’ ud u* = 2 ud u* = PC 
c v’ p V 

kt vd o* =2 vd t* = ___ 
PCpd: ’ 

o* = PC 
v’ p V 

p* = @-pJ&, T* = T-T Tp--T, 

P’* 
F’ TP*= AT . 

Here ps, v are the static pressure and kinematic vis- 
cosity of fluid. 

Incorporating Boussinesq approximation in equa- 
tion (8) and using the above non-dimensional vari- 
ables, the dimensionless form of the equations (7)- 
(15) can be written in conservative form, on dropping 
asterisks, as 

au+au=, 
ax ay (18) 

i au au* au0 ap a% a% 
~t+~+ay=-&+~+ay’ 

+f~l&u~-~)fGT (19) 

1 a0 3~0 ad ap as a% 
prz+z+ay=-ay+G+ayl 

+fold (up - a) (20) 
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1 aT auT avT 

+$T,-T)+jh,Ec{(u,-u)‘+(v,--v):} (21) 

:!S+%=o 
ay (22) 

(23) 

(24) 

1ar, auT 

pr at 
; ++ae= -%&-T) (25) 

where the dimensionless parameters appearing in the 
above equations are 

V2 
EC = ~ 

d,2 3Pryr, 
d,2c,AT, ud = vz,’ zT = ~ 2 

The governing equations have been made dimen- 
sionless in such a way so that the equations are free 
from Reynolds number, but the flow status can be 
predicted from the values of Rayleigh number 
(Ra = Pr*G). 

The dimensionless initial and boundary conditions 
corresponding to equations (15)-( 17) are 

u = v = up = VP = 0, T=T,=O att<O, Vx,y 

(26) 

u = v = VP = 0, T=l aty=O 

u = v = v* = 0, T=-1 aty=l 
Vx (27) 

u=v=u,=o, 
aT 
ax=O atx=O andat x=AVy (28) 

where A = l/dC. 

3. NUMERICAL PROCEDURE 

In order to solve the system of equations (18)- 
(25) under the boundary conditions (27) and (28) 
numerically, a control volume based finite difference 
technique with staggered grid has been employed. 

Mukherjea [17] has developed a combination 
scheme in which he has calculated the initial value of 
pressure from the pressure Poisson equation like 
MAC method [18] and then used the pressure cor- 
rection technique of SOLA [19]. He has also used a 
combination of central and second upwind diff- 
erencing method for discretization of convective 

terms. He has shown that this is a faster and more 
accurate scheme (in terms of flow divergence) than 
MAC or SOLA. Using staggered grid idea, multiphase 
flow problems have been solved by Harlow and 
Amsden [20], and by Di Giacinto [21]. 

In the present study, neither phase change nor sedi- 
mentation has been considered and the volume frac- 
tion of the dust particles has been neglected. This 
problem has been solved using the combination 
scheme of Mukherjea [17] for fluid phase and SOLA 
scheme for the particle phase. Primitive variables have 
been used for computation for fluid phase and then 
vorticity has been considered for the particle phase. 
The values of the primitive variables of the particle 
phase have then been computed using successive over 
relaxation (SOR) method. The computation has been 
terminated when the steady state condition is reached. 

3.1. Discretization of the equations 
The cross-section of the channel (shown in Fig. 1) 

has been considered as the computational domain 
where x-axis has been taken vertically upward, i.e. 
in the direction of u and up and y-axis horizontally 
rightward, i.e. in the direction of v and v,. The 
increment along x-axis is 6x and that along y-axis is 
Sy. The time increment is 6t. In this study a uniform 
grid has been considered. 

The value of u at (i,j) cell and at nth time step, 
usually denoted by Gj, has been written as uij, on 
dropping the superscript, for convenience. Same con- 
vention has been used for other variables also. 

The discretized forms of the equations (18)-(21) for 
a typical cell (i,j) are as follows : 

uij - ui- ,, vt~-vij-I 
------0 

6x + sy (29) 

1 u”“__u.. v 1, Pi+ lj_Pij 
=-------- Pr 6t 6X 

+ 
ui+,j-2ujj+Ui-,j uij+, -2uij+uij-, 

6x2 
+ 

6Y2 

+fmd (upi, - uij) f G 
T,+I,+T, 

2 

UT& -uBh, 
-(l-a,)UTUT~UBUB -cI, 6x 

-(l -EJaRnR*;rLuL -a, 
VR4”, -VLdL, 

6y (30) 

1 v?.+‘_v_ 
II ?I Pij+ I -PI, Vi+ ljm2Vij + Vi_ lj 

Pr 6t =-6y+ 6x2 

+ 
V;j+ 1 - 2Vtj + Vtj- I 

6Y2 
+fEd(%, -vim) 

- (1 -a,) uTvT6;u=vB - tl, 
UT4UT - uB&, 

6x 

- (1 -u,) v~vR6;vLvL - ol, 
vRdb, - VL4", 

sy (31) 
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UTTT-USTB wbT--UB4JTs 
-U-d 6X -% 6X 

l =- 
Pr { 

T+lj-2Kj+Z_,j+ cj+,-2zj+Tij_, 
6x2 6Y2 I 

- uRTR-VLTL 
(l-4 hy -% 

w#T, - VL& 
sy (32) 

i( l$‘pij +l$_ y --IQ - uj- 2 

+j&Ec 
,j 

2 > 
2 

+ 
Upij t- vpij- L - Vi] -Vi)- 1 

>I 

2&d 

2 + jp,CTpij-T)) 

where 4 stands for momentum flux and the suffixes 
B, T, R, L denote the values of the variables at mid 
point of the bottom, top, right and left faces of control 
volume, as shown in Fig. Z(a-c). 

t 

P,*tJ ---*--- 
T 

6x 
hi-1 pu 
. __ ??-- - 

“IJ-1 8 
Ui-lj 

PI-11 
. 

61 
(a) 

l--L Pi.11 
. “irlj 

Pi-li 
. 

t 

*I .l/ 

(b) 

Fig. 2. (a) Control volume for u-momentum of fluid; (b) control volume for u-momentum of fluid; 
(c) control volume for temperature of fluid. 
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Fig. 2-continued. 
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From the equation of continuity (22) for particle 
phase, stream function $, can be introduced as : 

all/, a** up=-ay, u,=ax. 

Differentiating equations (23) and (24) with respect 
to Y and x, respectively, and subtracting we get : 

; !$ + &(u,i,) + $(v,i,) = -%(5p - 5) (33) 

where 

is vorticity of the particle phase. 
The discretized form of this equation and equation 

(25) can be written as, 

i-t-T 
PII PV 

Pr& 

where 4c etc. denote the velocity flux of the particle 
phase at point T. 

The pressure Poisson equation can be derived by 
combining the discretized form of continuity and 
momentum equations as, 

Pi+ljw2Pij+Pi-lj +Pij+l -2Pij+Pij-l 

6x2 6Y2 

D, + udij - udi_ Ij + vdij - odil- 1 
- 

6t 6X SY 
. (36) 

The details of the discretization has been discussed in 
the Ph.D. thesis of Dalal [22]. 

3.2. Boundary conditions 
The Eulerian cells have been taken in such a way 

that the solid boundaries coincide with their walls. As 
a result the normal velocity mesh points always pass 
through the boundaries. The idea of boundary con- 
dition used in MAC formulation by Harlow and 
Welch [18] has been followed in the present inves- 
tigation. As the boundary is impermeable, for no-slip, 
the tangential and normal components of velocity at 
the boundary have been taken to be zero while for 
free-slip, only the normal component of velocity has 
been considered to be zero. The particle phase has 
been assumed as pseudo-fluid. So particles may slip 
at the boundary, as a result the tangential components 
of velocity of particle phase will not be zero, but the 
normal component of that has been considered to be 
zero. The stream function of particle phase at solid 
boundary has been assumed to be zero. 

3.3. Numerical stability 
In order to stabilize the scheme certain restrictions 

are to be made in mesh sizes 6x, Sy and time increment 
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6t. The combination factor is also determined by some 
restrictions. From CFL (Courant-Friedrich-Lewy) 
condition [23] it can be considered that the material 
cannot move through more than one cell in one time 
step. So 6t must satisfy the condition : 

&<L x 9 !F sv 
1 1 ‘Pr u’v’up~vp m,n’ 

Here, minimum is in the global sense. Now 6t is taken 
as one-fourth of that found from the above inequality. 

From linear stability analysis, considering that the 
momentum must not diffuse more than one cell in one 
time step, it can be written that 

& < 1 6X2SY2 
2Pr 6x2 + 6y2 

Finally, we choose a 6t which is minimum of the above 
two values of ht. The combination factor c(, is required 
to be found properly to ensure the stability. The value 
is chosen from the inequality, 

3.4. Steady-state condition 
Steady state condition has been defined as a state 

when the average Nusselt number of fluid (Nu) is 
nearly constant along the horizontal axis. Nu has been 
calculated at the hotter wall y = 0 and that at the 
middle of the channel, i.e. y = 0.5 and checked for 
equality to find the steady state because there is sym- 
metry in the flow and heat transfer within the channel. 

The average Nusselt number is defined as : 

where the subscript y denotes the value of the 
expression within parenthesis at y. We have computed 
Nu at y = 0, the hotter wall and at y = 0.5, the middle 
of the channel. 

4. DISCUSSION OF RESULTS 

In order to discuss results numerical computations 
have been performed on taking A = 1, Pr = 7, 

y = 1.4, EC = 0.01, CQ = 1 .O and for different values of 
Rayleigh number Ra = 21, 1000, 14000 and particle 
loading f= 0.0 and 0.05. The computational results 
have been presented in Figs. 3-12. 

In order to test the grid independency, we have 
computed the steady-state values of average Nusselt 
number defined by the equation (37) for the case of 
clear fluid at the wall and at the middle point of the 
cavity by taking different grid sizes. The following 
table shows that there is not significant change in the 
results due to the increment of grid beyond 40 x 40 
for the case Ra = 21. 

In order to examine the correctness of the present 

numerical method, we have first computed the average 
Nusselt number for the case of clear fluid by taking 
the dust parameters f, cq to be zero and compared 
the results with those computed by Patterson and 
Imberger [16]. From Fig. 3(aac), it is clear that our 
results have complete agreement with those of Pat- 
terson and Imberger. 

The variation of the velocity components of particle 
phase along the middle of the channel has been shown 
in Fig. 4(a, b) for Ra = 1000. It is revealed that both 
the velocity components decrease with increase of 
mass concentration f. The velocity components attain 
their maximum values near the wall and at the centre 
of the channel they are nearly zero. The velocity com- 
ponents for fluid phase are not shown here but their 
variation with f is not significant. For the same value 
of Ra, the temperature distribution along the middle 
of the channel and their change with the change in 
mass concentration f can be seen when Ra = 1000 
from Fig. 5(a, b). The distribution of temperature of 
the particle phase along x-axis is similar to the velocity 
distribution, i.e. temperature decreases with increase 
off, but the distribution along y-axis is not like that. 
Near wall effect is different from the effect at the 
middle of the channel. 

Figures 6(aac) and 7(aac) show the steady state 
isotherms and stream-lines for clear fluid for Ra = 2 1, 

1000, 14000, respectively. It is seen that for the case 
of Ra = 21 [Fig. 6(a) and 7(a)] the flow is conduction 
dominated and is very slow. The value of Nusselt 
number is very close to 1. for larger value of 
Ra( = lOOO), i.e. for larger temperature difference 
between the walls, the flow is convection dominated 
which is clear from the presence of tilt in the isotherms 
shown in Fig. 6(b). From Fig. 7(b) for streamlines it 
is revealed that the velocity of fluid increases with 
increase of Ra and the circulation is stronger than 
the previous case. As a result of increased convection 
unlike the previous case, the isotherms of fluid phase 
have now become two-dimensional. If we increase 
the temperature difference further, i.e. the value of 
Ra = 14000, Fig. 3(c) shows that Nu, continually 
increases to a maximum value 3.72 upto a time 0.027 
and, subsequently, decreases slightly to the steady 
value, i.e. 3.20 at time 0.08, when fluid is free from 
dust. From Fig. 6(c) we observe that the circulation 
is stronger for larger Ra. With the increase of cir- 
culation the isotherms are found to be more tilted 
than the previous case. From Fig. 7(c), it is clear that 
the fluid flow is horizontally parallel in the core region 
and shows a rapid increase in velocities. 

Table 1 

Grid size Nu at y = 0.0 

40x40 1.00277 
60x60 1.00277 
80x80 1.00278 

Nu at y = 0.5 

0.997733 
0.997741 
0.997765 
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t 
(bl, 8 

6 

2 

0 1 
tima 

Fig. 3. Comparison of average transient Nusselt number NU, and NU, of clear fluid for : (a) Ra = 21; 
(b) Ra = 1000 ; and (c) Rn = 14 000. 0 results of Patterson and Imberger, - present. 

Figures 8(a-c) and 9(a-c) show isotherms of Auid of Auid in the steady-state condition whereas from 
and of particle phase respectively for different values Fig. 9 one can easily see that the pattern of isotherms 
of Ru when mass concentration of particle phase of particle phase are different from that of fluid phase. 
f= 0.05. From Fig. 8 it is revealed that there is no For the case of particle phase, isotherms are more 
significant effect off on the temperature distribution tilted (one reason may be that the particles are sparsely 
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f=O.Ol 
---- zo.05 

EO.10 

-0.06 

I I 
0.25 

f=O.Ol 
---_ zo.05 

., co.10 

Fig. 4. (a) up against x for different values offwhen Ra = 1000, and y = 0.5 ; (b) up against y for different 
values offwhen Ra = 1000, and x = 0.5. 
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fnO.O1 
---- r0.05 

zo.10 

0)) 
0.08 \,,,\ h 

fz0.01 
--_- zo.05 

., .., zo.10 

Fig. 5. (a) TX, against x for different values offwhen Ra = 1000, and y = 0.5 ; (b) Tp against y for different 
values offwhen Ra = 1000, and x = 0.5. 
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(a) 

(b) 

Fig. 6. Steady-state isotherms of clear fluid for : (a) Ra = 21; 
(b) Ra = 1000; and (c) Ra = 14000. 

(b) 

Fig. 7. Steady-state streamlines of clear fluid for: (a) 
Ra = 21; (b) Ra = 1000; and (c) Ra = 14000. 
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Fig. 8. Steady-state isotherms of fluid whenf = 0.05 for : (a) Fig. 9. Steady-state isotherms of particle phase whenf = 0.05 
Ra = 21; (b) Ra = 1000; and (c) Ra = 14000. for: (a) Ra = 21; (b) RQ = 1000; and (c) Ra = 14000. 
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(a) 

(b) 

(cl 
Fig. 10. Steady-state streamlines of fluid whenf= 0.05 for: 
(a)Ra=21;(b)Ra= lOOO;and(c)Ra= 14000. 

(b) 

(cl 
Fig. 11. Steady-state streamlines of particle phase for : (a) 

Ra = 21; (b) Ra = 1000; and (c) Ra = 14000. 
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Fig. 12. Steady-state Nusselt number of fluid (Nu) againstfwhen Ra = 1000. 
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distributed and the particle phase is not as continuous 
as fluid) and the temperature is also less than that of 
fluid. The streamlines of fluid and of particle phase 
have been shown in Figs. lO(a-c) and 11 (a-c), respec- 
tively, for different values of Ra whenf = 0.05. Figure 
10 reveals that the (effect off is not much significant 
in the velocity of fluid and streamlines are very similar 
to that of clear fluid. With the increase of Ra, the 
difference in steady-state stream function values of 
fluid and particle phase increases and streamlines of 
fluid become flatter when circulation is stronger, 
whereas streamlines of particle phase are more of a 
circular shape and circulation is slower than that of 
fluid. It can be explained that when velocity of fluid 
increases with increase of Ra, drag force also 
increases, which in turn, increase the difference 
between the velocities of fluid and of particle phase. 
For Ra = 14000, the flow is laminar and slow. The 
corner vortices have not been found prominent for 
this value of Ra = 14 000. 

Figure 12 shows the variation in steady-state Nus- 
selt number of fluid with the mass concentration of 
particle phase. It is seen that Nusselt number of fluid 
phase decreases with the increase in mass con- 
centrationfof particle phase, i.e. heat transfer rate of 
fluid decreases with increase in mass concentration of 
particle phase. 

5. CONCLUSIONS 

Numerical results are reported for the transient heat 
transfer due to natural convection of a dusty fluid in a 
finite rectangular channel having adiabatic horizontal 

walls and differentially heated vertical walls. Com- 
puted results have good agreement with the earlier 
studies [16]. The heat transfer rate of fluid increases 
with the increase of Rayleigh number and decreases 
with the increase of mass concentration. The increase 
of temperature difference between the vertical walls 
makes the circulation stronger and the difference 
between stream function values of fluid and particle 
phase increases. The time to reach steady-state 
increases with increase of mass concentration. 
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